Maganti, Harinad
Research and/or Clinical Interests
I focus on hematopoietic stem cell transplantation (HSC) which is the only curative therapy for over 30 illnesses. However, HSCs are rare and the molecular mechanisms that govern HSC cell fate decisions are not well characterized. The overarching goal of our laboratory is to discover novel molecular programs/bioengineering technologies that lay the foundation for the development of new HSC products for cellular therapy. We use unbiased systems biology and integrative approaches to build gene-regulatory networks (GRNs) using omics (bulk-RNA-seq, ATAC-seq, ChIP-seq, single-cell RNA-seq) data we have generated in house. The GRNs are subsequently tested using reductionist approaches using CRISPR-Cas9 genome engineering technology to identify “drivers” of HSC fate.
The current projects in our laboratory are:
Project 1: Epi-transcriptomic regulation of hematopoietic stem and progenitor cells (HSPCs)
m6A and m6Am methylation are reversible epigenetic marks that control the stability of mRNA within all eukaryotes. While both m6A/m6Am levels have been previously implicated in leukemias, how they control human HSPC fate during homeostasis is not well understood. The goal of this project is to
- To elucidate new pathways to promote HSC expansion
- To identify the differential pathways controlled by m6A/m6Am marks during homeostasis versus cancer, that could then be targeted for precision therapy.
Project 2: CRISPR-Cas9 gene-editing of HSCs for treatment of Sickle Cell Disease (SCD)
Patients with SCD carry a mutation in the β-globin genes that impacts the functioning of red blood cells thereby depriving oxygen to vital organs within their body. In collaboration with the National Research Council of Canada, we are currently developing a novel platform that will enable us to correct the mutations within the HSCs isolated from patients with SCD and transplant them back into the patients.
Brief Biography
I am a Research Scientist at Canadian Blood Services in Ottawa, Ontario. I completed my Master of Science in Microbiology at McMaster University and my Doctor of Philosophy in Immunology and Stem Cell Biology at the University of Ottawa. Following that I have also received postdoctoral training in Neuroscience at the Hospital for Sick Children as well as postdoctoral training in Hematology and Stem Cell Biology at Canadian Blood Services
Additional Information
Select Publications:
- Maganti, H.B et al., Use of CRISPR/Cas9 Gene Editing to Improve Chimeric Antigen-Receptor T Cell Therapy: A Systematic Review and Meta-Analysis of Preclinical Studies. Cytotherapy. 2022 doi: 10.1016/j.jcyt.2021.10.010
- Maganti, H.B et al. Persistence of CRISPR/Cas9 gene edited hematopoietic stem cells following transplantation A systematic review and meta-analysis of preclinical studies, Stem Cells Trans Med. 2021, Doi: 10.1002/sctm.20-0520
- Maganti, H.B, et al MTF2/MDM2 signaling axis drives refractory acute myeloid leukemia. Cancer Discov, 8(11), pp.1376-1389. *Co-first Authors
- Manias-Rothberg J.L*, Maganti, H.B*, et al, 2018. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov, 4:21. *Co-first Authors
Patents:
Title: Treatment of Acute Myeloid Leukemia
U.S. Patent Application Serial Number: 62/711.173
Inventors: William Stanford, Caryn Ito, Mitchell Sabloff, Harinad B Maganti, Hani Jrade, Harold Atkins
Status: Awarded (2022)
Title: Novel Stem Cell Agonists for ex-vivo expansion of hematopoietic stem and progenitor cells
U.S. Patent Application Serial Number: 050/13453.171,
Inventors: Nicolas Pineault, Javed Menasia, Harinad B Maganti, Julie Audet.
Status: Patent pending